Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(22): e2210611, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058138

RESUMO

Humidity- and moisture-induced degradation has been a longstanding problem in perovskite materials, affecting their long-term stability during applications. Counterintuitively, the moisture is leveraged to tailor the reversible hydrochromic behaviors of a new series of 2D Dion-Jacobson (DJ) perovskites for reconfigurable optoelectronics. In particular, the hydrogen bonds between organic cations and water molecules can be dynamically modulated via moisture removal/exposure. Remarkably, such modulation confines the movement of the organic cations close to the original position, preventing their escape from crystal lattices. Furthermore, this mechanism is elucidated by theoretical analysis using first-principles calculations and confirmed with the experimental characterizations. The reversible fluorescent transition 2D DJ perovskites show excellent cyclical properties, presenting untapped opportunities for reconfigurable optoelectronic applications. As a proof-of-concept demonstration, an anti-counterfeiting display is shown based on patterned reversible 2D DJ perovskites. The results represent a new avenue of reconfigurable optoelectronic application with 2D DJ perovskites for humidity detection, anti-counterfeiting, sensing, and other emerging photoelectric intelligent technologies.

2.
Cell Death Discov ; 3: 17059, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904818

RESUMO

Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...